Fuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets

author

Abstract:

‎Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set‎. ‎If we have fuzzy observations‎, ‎using ordinal regression methods can't model them; In this case‎, ‎using fuzzy regression is a good method‎. ‎When observations are fuzzy and there are outliers in the data sets‎, ‎using robust fuzzy regression methods are appropriate alternatives‎. ‎In this paper‎, ‎we propose a fuzzy least square regression analysis‎. ‎When independent variables are crisp‎, ‎the dependent variable is fuzzy number and outliers are present in the data set‎. ‎In the proposed method‎, ‎the residuals are ranked as the comparison of fuzzy sets‎. ‎In the proposed method‎, ‎the residuals are ranked as the comparison of fuzzy sets‎, ‎and the weight matrix is defined by the membership function of the residuals‎. ‎Weighted fuzzy least squares estimators (WFLSE) are obtained by using weight matrix‎. ‎Two examples are discussed and results of these examples are presented‎. ‎Finally‎, ‎we compare this proposed method with ordinal least squares method using the goodness of fit indices‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable

The traditional regression analysis is usually applied to homogeneous observations. However, there are several real situations where the observations are not homogeneous. In these cases, by utilizing the traditional regression, we have a loss of performance in fitting terms. Then, for improving the goodness of fit, it is more suitable to apply the so-called clusterwise regression analysis. The ...

full text

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

Fuzzy Approximations with Non-symmetric Fuzzy Parameters in Fuzzy Regression Analysis

This paper proposes fuzzy regression analysis with non-symmetric fuzzy coefficients. By assuming non-symmetric triangular fuzzy coefficients and applying the quadratic programming formulation, the center of the obtained fuzzy regression model attains more central tendency compared to the one with symmetric triangular fuzzy coefficients. For a data set composed of crisp inputs-fuzzy outputs, two...

full text

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

Fuzzy Risk Analysis Based on Ranking of Fuzzy Numbers Via New Magnitude Method

Ranking fuzzy numbers plays a main role in many applied models inreal world and in particular decision-making procedures. In manyproposed methods by other researchers may exist some shortcoming.The most commonly used approaches for ranking fuzzy numbers isbased on defuzzification method. Many ranking fuzzy numberscannot discriminate between two symmetric fuzzy numbers withidentical core. In 200...

full text

Data Analysis with Fuzzy Measure on Intuitionistic Fuzzy Sets

Study of fuzzy entropy on intuitionistic fuzzy sets (IFSs) were proposed, and analyzed. Built in uncertainty in IFSs, it is named as hesitance. It is contained in fuzzy membership function in itself by definition. Hence, designing fuzzy entropy is not easy because there is no general entropy definition about IFSs. By considering existing fuzzy entropy definitions, fuzzy entropy on IFSs is desig...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 22  issue 2

pages  53- 67

publication date 2018-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023